Monomorphisms in Categories of Log Schemes
نویسندگان
چکیده
In the present paper, we study category-theoretic properties ofmonomorphisms in categories of log schemes. This study allows one to give a purely categorytheoretic reconstruction of the log scheme that gave rise to the category under consideration. We also obtain analogous results for categories of schemes of locally finite type over the ring of rational integers that are equipped with “archimedean structures”. Such reconstructions were discussed in two previous papers by the author, but these reconstructions contained some errors, which were pointed out to the author by C. Nakayama and Y. Hoshi. These errors revolve around certain elementary combinatorial aspects of fan decompositions of two-dimensional rational polyhedral cones — i.e., of the sort that occur in the classical theory of toric varieties — and may be repaired by applying the theory developed in the present paper.
منابع مشابه
Bourn-normal Monomorphisms in Regular Mal’tsev Categories
Normal monomorphisms in the sense of Bourn describe the equivalence classes of an internal equivalence relation. Although the definition is given in the fairly general setting of a category with finite limits, later investigations on this subject often focus on protomodular settings, where normality becomes a property. This paper clarifies the connections between internal equivalence relations ...
متن کاملOn the Axioms for Adhesive and Quasiadhesive Categories
A category is adhesive if it has all pullbacks, all pushouts along monomorphisms, and all exactness conditions between pullbacks and pushouts along monomorphisms which hold in a topos. This condition can be modified by considering only pushouts along regular monomorphisms, or by asking only for the exactness conditions which hold in a quasitopos. We prove four characterization theorems dealing ...
متن کاملAdhesive and quasiadhesive categories
We introduce adhesive categories, which are categories with structure ensuring that pushouts along monomorphisms are well-behaved, as well as quasiadhesive categories which restrict attention to regular monomorphisms. Many examples of graphical structures used in computer science are shown to be examples of adhesive and quasiadhesive categories. Double-pushout graph rewriting generalizes well t...
متن کاملΜ-abstract Elementary Classes and Other Generalizations
We introduce μ-Abstract Elementary Classes (μ-AECs) as a broad framework for model theory that includes complete boolean algebras and metric spaces, and begin to develop their classification theory. Moreover, we note that μ-AECs correspond precisely to accessible categories in which all morphisms are monomorphisms, and begin the process of reconciling these divergent perspectives: for example, ...
متن کاملCategories of Log Schemes with Archimedean Structures
In this paper, we generalize the main result of [Mzk2] (to the effect that very general noetherian log schemes may be reconstructed from naturally associated categories) to the case of log schemes locally of finite type over Zariski localizations of the ring of rational integers which are, moreover, equipped with certain “archimedean structures”.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014